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Abstract-

Artificial Intelligence (Al) is increasingly pivotal in theoretical modeling of molecular
interactions in binary liquid systems, addressing challenges in accurately predicting
complex phenomena such as phase separation, nonideal mixing thermodynamics, and
solute—solvent interactions. Al's role spans generating predictive potential energy
surfaces, applying generative and inverse modeling for configuration space exploration,
and enhancing sampling efficiency through active learning. Neural network potentials
and graph-based molecular representations facilitate modeling of multicomponent
interactions with improved accuracy and transferability. AI-driven multiscale coupling
frameworks link quantum, molecular, and continuum scales, promoting comprehensive
simulation of binary mixtures. Critical evaluation of AI models focuses on
thermodynamic consistency, conservation laws, and transferability across varying
compositions and thermodynamic conditions. Data curation, benchmarking, and
transparency underpin reproducibility and trustworthiness, while computational
efficiency and hardware utilization remain crucial for practical deployment. Al advances
enable hypothesis formulation and design of experiments in binary liquid mixtures,
paving pathways for accelerated discovery and enhanced understanding of molecular
interactions. The integration of Al with classical thermodynamics and molecular theory
offers promising avenues for advancing chemical sciences in predicting and controlling
complex liquid behaviors.
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Introduction

Binary mixtures constitute a fundamental, widely studied class of liquid systems,
central to both theoretical development and applications. Phenomena such as phase
separation and nonideal mixing thermodynamics generate considerable interest.
Extensive molecular simulation studies and many-body theoretical approaches explore
mixing, nonideal solvation, and solvent effects on solute reactions, yet gaps remain.
Strong microscopic coupling, complex interfacial phenomena, and solute—solvent
interactions challenge the accurate and efficient modeling of binary svstems. Al
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approaches hold promise in molecular modeling; various paradigms, domains, and
proposals target specific challenges. The adoption of diffusion generative models for
configuration-space exploration lacks physico-chemical content; presampling, accurate
probability conditioning, and proxy energies mitigate costly many-body evaluations.
Several multi-fidelity, Al-accelerated, and transfer-learning schemes offer improved
prediction, data-efficiency calibration, and generalization across chemical-identity
perturbations. Al-driven, two-dimensional (2D) representations, extended to three-
dimensional (3D) mixtures, encapsulate symmetry and invariance, simplifying
elaborated transfer-learning schemas. Graph approaches excel in the inclusion of soft
constraints—complex topological, molecular graphs cater to extensive solute—mixture
multi-composition, transfer-learning requirements.

Al methodologies for binary liquids span a diverse spectrum: facilitating datum
synthesis, iterative sampling enhancement, and broad-ranging three-scale coupling
interfacing. Al-guided aqueous-organic models exploit experimental proximity,
enabling energetics guidance across various compounds; supercritical fluid modulation
toward low-density regimes incidentally circumscribes high-temperature, low-density
arrangements. LIW systems profiting from joint density-function-investigated
energetics unveil restricted, explicit subgraph, yet under-sampled accelerants
necessitate action by design. Tracers elucidate component interplay through AI-
detected minute, yet crucial, interaction sparsity—current integrated frameworks
retain solute-unaware inadequacies, underscoring further efforts within multiscale
boundary.

Proxy models remain instrumental in refining AI models, especially within highly
accurate many-body-ground frameworks. The generalization-acquisition tension among
composition, temperature, and pressure substantially hampers LIW advancement—
Al formations adhering to applicable, transferable, boundary-responding, or scenario-
adaptive bases offer potential directional enhancement.

Theoretical Framework for Binary Liquid Mixtures

Mixtures of two immiscible or partially miscible liquids, commonly known as liquid—
liquid binary mixtures, form a crucial class of colloids. In these mixtures, substances
dissimilar to the solvents are often dissolved to improve the solubility of specific
compounds of interest or to enhance certain physicochemical properties. Well-
established experiments exist for measuring the density, refractive index, and
ultrasonic velocity of liquid mixtures; however, direct determination of the associated
solute—solvent interactions remains exceedingly challenging. Theoretical models,
particularly prediction equations based on the properties of pure components, have
been developed to address such measurement difficulties for a variety of binary liquid
mixtures, including nonideal-water-organic solute systems (G. Arturo, 2005).
Experimental characterization of liquid mixtures is both cumbersome and infeasible
for all candidate combinations, emphasizing the need for predictive models. Established
activity-coefficient models—UNIFAC, COSMO-RS, and the NRTL activity-coefficient
equation—enable representation of liquid mixtures by pure-component information,
yet these approaches do not provide insight into liquid-liquid solvation interactions.
With the advent of machine learning and artificial intelligence, new opportunities
arise to gain insight into the elusive arch of multicomponent solvation through
predictive modeling of solute—solvent interactions within binary mixtures.

Artificial Intelligence Paradigms in Molecular Modeling

Binary liquid mixtures are forms of matter composed of two distinct liquids whose
phases can strongly interact. Designers of binary liquid-based media typically seek to
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enhance favourable properties and limit undesirable ones. Aqueous-organic mixtures
are ubiquitous, yet aqueous-ionic liquids are emerging as greener alternatives for
dissolving non-polar species. Ensuring reliable access to physical properties remains
crucial for advancing predictive modeling. Aqueous-organic systems span vast
concentration ranges, making accurate initialization challenging; Al facilitates a
complementary approach by modelling systems containing very dilute, non-volatile
additives. Further, large numbers of archived and fresh datasets are already available
from both experimentation and simulation, streamlining data driven method
development and rapidly extending the range of system compositions, temperatures,
and pressures while refining predictions of structure—property relationships (Jung et
al., 2021) ; (Cao & Tian, 2021).

Supervised Learning for Potential Energy Surfaces: The potential energy
surface (PES) arises in a variety of fields, from atomic-scale processes to geological
time scales. It describes the interaction of inter-particle energies, where pairs of atoms
share similar scales of a few eV in bonding atoms. Intermolecular interactions in
many-body systems involve much higher numbers of particles but stay within the
range of bond formation and breakage. Molecules diffuse among energy wells
established by maximum substitutions to this basin and therefore can reach the
thermodynamic stable state. Within these physical perspectives, many simulation or
modelling approaches of molecules fusing experimental data of thermodynamic,
partitioning parameters, transfer data obtained by physicochemical springboard from
clothes-cleaning agents aimed at chemical detection of components of binary water—
the solvent of choice in many molecular structures—organic systems, (Zaverkin &
Kastner, 2021) the possible quantification of solvation structure of potential-energy-
mapping surfaces either volumic or in terms of partitioning at two different pressure
on an ionic liquid additive to mixture and thus the identification of any detail structure
of trace non-ionic component resulted by the identification of solute within 1-8 waters
in conventional — or lime to midrange and no-water-accompanied counting strict area
on the mixture-within-a-mixing environments gives their own informative details at
only simple presence level.

Artificial potential-energy-surface (PES) approximation or directly potential
mapping is attainable without auxiliary messy automatic-setup huge-spectrum-dataset
generation phase. Accurate molecules with physics—chemistry compliance screened
from wide array of topologies, simple larger-format reinforcement estimation on
occasion or huge optimization non-termination-enabled initial setting on huge acoustic
aspect ligands such as graph—continuum—molecular interfaces renders only potential-
energy directly-mapping-safe modeling based only on molec number, rather than atom
number in many advanced quantum-chemical PES method.

Generative and Inverse Modeling for Configuration Space: Exploring the
full configuration space of molecular interactions is a formidable challenge that emerges
in various contexts. Generative and inverse modeling aim to alleviate this difficulty
by learning a probability distribution over configurations or by generating
configurations that meet predefined criteria. These principles apply to binary molecular
interactions, where the goal is to sample mixtures whose properties closely align with
those of experimental systems.

Two key paradigms have advanced generative and inverse modeling: probability
modeling, which characterizes target distributions, and the use of learned objectives
paired with an adjustable generative model, which facilitates the generation of
compliant configurations (Herzog et al., 2022) ; Schwalbe-Koda & G6émez-Bombarelli,
2019). Probability models enable sampling from the approximate distribution while
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varying the conditions associated with the samples. For example, a common
configuration involves using embeddings of the relevant thermodynamic state as
conditioning information or latent variables. In cases where defining a full probability
distribution proves intractable, conditional approaches may still be effective. Generative
classifiers and other similar strategies allow the use of non-conventional objective
functions that are straightforward to specify and facilitate configuration generation
in order to achieve predefined states.

The empirical assessment of these models often centers around the fidelity of their
outputs, scrutinizing either properties indicative of the target distribution or targeted
observables. The active selection of training datasets becomes paramount,
encompassing the definitions of criteria governing a good configuration concerning
the molecule and properties of interest. When the objective emphasizes properties
such as viscosity or diffusion coefficients instead of matching ensemble distributions,
strategies that maximize the anticipated property or align closely with the expected
equation of state become vital (Schwalbe-Koda & Gémez-Bombarelli, 2019).

Uncertainty Quantification and Model Validation: The modeling of molecular
interactions is critical for advancing chemical engineering and materials science. Self-
consistent thermodynamic models of binary liquid mixtures remain elusive despite
considerable advances in molecular modeling and theory; a gap between theory and
experiment persists. Artificial intelligence (AI) can potentially constrain
thermodynamic models of molecular mixtures, accommodating diverse interactions
across many chemical species and states of matter. By leveraging large data sets of
molecular configurations, interactions, and thermodynamic properties, Al elucidates
governing principles and raises the prototype theory to a higher level of sophistication.

Al-driven approaches to liquid systems focus primarily on substantial portions of
the Configuration Space (CS), often neglecting the tracking of uncertainty about
molecular specifications (e.g., certain pair potentials among mixture species). It is
desirable to complement sophisticated large-data training of models describing
mechanical structure and bulk thermodynamics with systematic attention to the
uncertainty surrounding the molecular specification that drives these macroscopic
properties.

Al-Driven Methods for Binary Liquid Systems

Artificial Intelligence (Al) plays an instrumental role in the theoretical modeling of
molecular interactions in binary liquid systems. It provides key algorithms to: (1) predict
multicomponent interactions in heterogeneous systems; (i1) represent mixtures of
varying composition under different environments; and (ii1) select data points for model
building with a minimal number of queries. The modeling of binary liquids presents
several challenges for materials science and engineering. Combining an explicit
representation of molecular species with a fully connected neural network allows
knowledge about the structure of mixing environments to be integrated. The
availability of computational frameworks for quantum-chemical calculations of solute—
solvent interactions enables machine-learning models to be trained on relevant
properties from straightforward ab initio calculations. Finally, multiscale approaches
link the microstructural information encoded in molecular configurations to continuum
models, bridging the gap between quantum and macroscopic phenomena. Mulitiscale
coupling frameworks enable AI models to even be incorporated in quantum—continuum
schemes.

Neural Network Potentials for Multicomponent Interactions: Neural network
potentials (NNPs) have emerged as powerful tools for modeling multicomponent
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interactions in complex molecular environments. To facilitate their applications in
binary liquid mixtures, different NNP architectures have been put forward, focusing
on the development of suitable training protocols and local and global descriptors.
The first approach, utilizing a single global descriptor for state identification, enables
efficient training on small data sets, while subsequent transferability tests demonstrate
the model’s applicability to other aqueous systems and permanent organic solutes
and even broader concentrations. The importance of local structural features in
multicomponent liquids has prompted the consideration of graph-based molecular
representations. These frameworks, encompassing atomic and edge features and
message-passing schemes, allow NNPs to predict the energies and forces associated
with target components given mixtures of widely varying identity and concentration.
Binary mixtures involving a nonionic trace component highlight the potential of Al to
enhance understanding of subtle solute interactions overlooked by traditional models.

Graph-Based Representations of Molecular Networks: Molecular graphs
capture chemical information from the connectivity of atoms and bonding
arrangements. Nodes correspond to atoms; edges represent bonded or nonbonded
interactions. Interacting particles in materials can also be described via graphs. For
binary liquids comprising two substance types, graph-based representations can encode
fixed connectivity with fully flexible position and orientation in a single unified
framework.

Molecular systems can be described by graphs consisting of nodes connected by
edges. In chemistry, the nodes typically represent atoms and the edges denote covalent
bonds. For compounds composed of more than one species, edge types may differentiate
between different bond types or atom types. In physical sciences, graphs can also
represent the connectivity of interacting particles in the same material. An atomic
graph can represent a molecular machine as a set of coupled mechanical parts or a
solid as particles in a material design. Graphs enable reduced dimensions and long-
range interactions to capture structural characteristics and physics and self-assembly
of materials over extended length and time scales.

Liquid—liquid binary mixtures of an aqueous layer and a nonaqueous organic phase
are ubiquitous in nature and industry. Popular examples include extraction of high-
value organic compounds from water—organic waste streams and separation of biofuels,
pharmaceutical products, perfumes, and food additives from aqueous fermentation
broths. Nonionic trace components dissolved in dominant binary solvents influence
solvation strength and selectivity on the dominant solute, leading to more desirable
product crystallization, separation, and purification. Organic solutes inducing hidden
hydrogen-bonding interactions universally appear in aqueous and ionic liquid systems,
requiring numeric evidence. The spontaneous emergence of aqueous and organic layers
from binary mixtures of chemically unlike components exemplifies sufficient heat
transfer via solute condensation in seeding condensation to increase condensation
rate of droplets.

Active Learning for Efficient Sampling: Active learning facilitates efficient
sampling in interatomic potential modeling by guiding the selection of the most
informative configurations for training. By iteratively querying input configurations
expected to reduce uncertainty most, active learning accelerates high-throughput
searches for new materials and enables de novo exploration of potential-energy surfaces
with reduced overhead. Hierarchical sampling methods extend the strategy to model-
free generation of generalized conductive, semiconductive, or other interatomic
interactions across diverse materials. Such techniques are instrumental in constructing
general-purpose interatomic potentials that significantly decrease computational
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expenditures while preserving high fidelity in subsequent simulations. Active learning
and hierarchical strategies have also been successfully applied in machine learning
force-fields for complex covalent compounds, inorganic crystals, ionic liquids, metallic
glasses, and various nanostructures.

The active learning process consists of sequentially sampling new atomic
configurations, estimating the model’s uncertainty, and selectively incorporating data
to improve the model. The procedure is initiated from an initial dataset of density
functional theory (DFT) calculations performed on disordered configurations. Molecular
dynamics simulations are then executed using the best available models to explore
atomic configurations, with uncertainty measures governing the inclusion of novel
configurations for additional DFT calculations. The models are retrained with the
entire assembly of data after each round. This iterative loop continues until the model
captures relevant features of aluminium crystals, such as face-centred cubic (FCC),
hexagonal close-packed (HCP), and body-centred cubic (BCC) structures. Notably, the
strategy does not bias the sampling toward specific types of configurations, permitting
the model to encounter a wide variety of structures naturally. The active learning
algorithm exhibits a high degree of parallelisability; it can engage numerous computing
nodes to generate approximately 6000 DFT calculations within a single round. The
method effectively predicts equilibrium and kinetic properties of aluminium’s crystal
and liquid phases, including defect energies and liquid—solid coexistence curves. It is
especially geared toward extreme, nonequilibrium processes, as successfully
demonstrated in shock simulations involving 3 million atoms, for which force prediction
errors remain comparable to typical force magnitudes (S. Smith et al., 2020).

Multiscale Coupling: From Quantum to Continuum: Theoretical modeling
approaches at the quantum, molecular, and continuum levels are increasingly combined
in rigorous multiscale coupling frameworks to link phenomena separated by orders of
magnitude in time and length while remaining consistent with fundamental physics.
Such approaches enhance computational efficiency while broadening applicability
beyond conventional unresolved regimes (Karra et al., 2023). Multiscale methods
involving quantum and molecular-mechanical degrees of freedom have recently been
extended to connect molecular-dynamics trajectories to reactive-transport solutions
at the continuum or mesoscopic level (Le Piane et al., 2020). These methods focus on
systems in which charge density or ultrafast processes evolve on timescales above the
molecular-dynamics cutoff and transport dominates subsequent relaxation. Multiscale
approaches are also being enacted at the molecular and continuum scales of classical
fluid mechanics, where retention of microscopic nonequilibrium phenomena is often
critical to predictions. The projection of quantum-mechanical structures and dynamics
onto classical fields is similarly being integrated into quantum-classical multiscale
methods. Specific multiscale coupling strategies that incorporate neural-network
potentials and gradient-embedded architectures for machined-learned-coupled schemes
offer opportunities for Al-guided investigations of binary mixtures.

Model Evaluation and Physical Consistency

The quality and reliability of Al-generated molecular models depend on the
evaluation of their physical consistency, which is critical for trustworthy predictions
of system properties. Basic requirements for physical consistency include
thermodynamic consistency, respect for conservation laws, and validation against
experimental data; the applicability of these criteria for systems modeled in Al-driven
research is examined in detail for binary liquids. Thermodynamic consistency implies
convergence of equation-of-state predictions under limiting conditions, and several
established equations of state are available for different binary mixtures. Respect for
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conservation laws mandates that continuous physical processes must not induce jump
discontinuities in the modeled potential energy surface; the Maxwell relations and
eight equilibrium relations among excess thermodynamic quantities provide additional
relevant criteria. Transferability is a key concern in Al-driven modeling of binary
fluids; simple metrics are proposed for the quantitative assessment of transferability
across compositions, temperatures, and pressures.

Thermodynamic Consistency and Conservation Laws: Molecular interactions
in binary liquid systems underpin fundamental phenomena in chemistry and
engineering. While they remain poorly understood, significant insights can be gained
from theoretical modeling of the relevant potentials. Nevertheless, no widely accepted
candidates exist due to their intricate nature, and density functional theory incurs
prohibitive computational costs. Theoretical descriptions of binary mixtures therefore
lag behind those for pure fluids. Artificial intelligence (AI) and data-driven methods
are beginning to fill this gap: they provide empirical approximations to the equilibrium
configurations and potential energy surfaces (PES) of binary mixtures, based on data
collected from related systems. Diverse architectures and training approaches have
been proposed, addressing specific substances, properties, and experimental conditions,
and progressively enhancing the state of the art. Mapping the current landscape of Al
techniques in this field facilitates the search for an adequate model, informs ongoing
development, and advances both theoretical and practical understanding of fluid
mixtures.

Robust theoretical modeling of fluid systems hinges on compliance with basic
thermodynamic principles. Conservation of mass, momentum, and energy is imposed
naturally in most Al methods by the mathematical structures of the employed models.
Together with thermodynamic consistency, these principles guarantee that the
predictions made for substances of relevant thermo physical properties constitute a
reliable basis for extrapolation beyond the available data. Thermodynamic consistency
ensures the fulfillment of fundamental equations relating bulk observables at
equilibrium, such as the Gibbs—Duhem relation, the Clapeyron—Clausius equation,
and the statements of the second law, on the PES of the mixture. It further requires
the construction of corrected models when interspecies interactions need to be
incorporated into pre-existing, pure-component representations from the literature.
Once validated, these Al modeling approaches represent a powerful tool for theoretical
modeling of binary mixtures.

Transferability Across Compositions and Conditions: The ability of models
to extrapolate meaningful properties across chemical compositions or thermodynamic
conditions is among their most powerful features. The models covered in this section
were trained with mixtures at one set of mole fractions, temperatures, and pressures,
yet predictions can be made for distinct compositions and conditions. This generalization
capability holds tremendous practical significance. It enables the identification of
mixtures where specific target properties meet predefined criteria, even when
exploratory data about those mixtures are scarce. Having no prior knowledge of the
new compositions, temperatures, or pressures, the Al-infused instructions continue to
yield relevant physical insights.

Different measures characterize the transferability of models trained on chemical-
or phase-space subsets. One fundamental metric quantifies the shift of equilibrium
configurations under different compositions, taken as the average pairwise deviation
between non-hydrogen atoms from the specific starting equilibrium structure.
Generalization across branched and linear alcohol mixtures was examined using a
second metric: the prediction of water—metal free-surface energies with models trained
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on water—desolvated-organic components. Transferability across distinct conditions—
specifically, wide variations in temperature and pressure—was also assessed,
demonstrating that both substituent type (saturated vs. unsaturated) and substituent
functionality (fewer vs. more H-bond donors) influence surface-energy predictions. As
in the previous cases, the Al-guided methodology offered direct pointers to these
systematic dependences, together with insight into the generalization characteristics
of the models.

Computational Considerations and Best Practices

Rigor in data curation and management is essential for machine learning (ML)
research across any domain. Benchmark datasets that are compact, representative,
decoupled from biased datasets, and publicly available reduce variability in training
setups and facilitate fair comparisons among different methods or models considered
on a similar task. Rigor in generating benchmark datasets, as well as public accessibility
of training codes and detailed specifications of training setups, enhances the
reproducibility and transparency of ML research over the deep learning literature in
the past 20 years. Improved reproducibility and transparency also allow research to
benefit from accumulated knowledge from community experience. Both raw data and
the same set of edited files used to train the models should be released, together with
a description of the editing procedure, data interoperability, and traceability of the
origin of the files involved, to pursue data integrity across the ML community. Moreover,
decomposition of the research into independent theoretical and technical parts—for
which clear, coherent, and concise expositions are fundamental—drastically increases
the opportunities for reuse of algorithms or auxiliary tools by other researchers. Full
documentation of code remains a key enabler of reproducibility. Open-access mindset
and promote open-access data or manuscripts complements the release of codes and
datasets by enhancing the availability of high-quality datasets and offering the
opportunity to profit from accumulated experience of other laboratories.

Computational efficiency is time-efficiency, as an algorithm completes its operation
within a reasonable time period. Sustaining high computational efficiency even while
increasing the dimensions of the problem at hand—typically the number of constituents
or field variables, rather than the system size in time-evolution problems—often
indicates that a practical operation is possible without plunging into theoretical
despondency. Hardware utilization is the degree of effective exploitation of existing
hardware resources, including unit processors as well as local and wide area networking
hardware. Rather than all jobs being offloaded to cloud service without making
sufficient use of local processors, the efficient use of available resources, as well as
minimized downtimes is as desirable as high time-efficiency. Employing the publicly
available parallelized versions of self-adaptive algorithms such as those embedded in
optimized infrastructure elsewhere remains an approach to upgrade parallelization
when the bottleneck on local hardware arises. Compatibility with general-purpose,
open-source, and high-level multi-platform programming environments is an asset
enabling migrations across varied hardware.

Data Curation and Benchmarking: Binary liquid mixtures are ubiquitous in
nature and technology, and their physical properties underpin key processes in material
science, biology, and industry. Despite numerous theoretical, computational, and
experimental efforts, however, the phase behavior and macroscopic properties of binary
liquid systems remain challenging to predict. Such systems warrant further attention,
given their industrial importance and the recent surge of interest in Al-based
approaches to accelerate molecular modeling.
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An interaction potential that accurately describes the forces between the constituent
species of a binary liquid system is a critical modeling component. The potential must
reflect, a-priori, the nontrivial interactions that these species exert on one another;
specifically, it should encode information about preference for mixing versus demixing,
proton-transfer capability, association strength, and other features of relevance to the
properties under study. In simple liquids, effective potentials are frequently obtained
through direct—indirect perturbation theories in which the potential for the one-
component reference system intervenes to generate the effective potential; because
the physics in general depends on system-specific details, it is unsurprising that such
potentials do not convey the information desired for binary—binary mixtures. Such
modelling flexibility furthermore typically necessitates initial training and calibration
in order to accurately capture the reference-properties of the one-component system—
yet constructing the required datasets remains problematic, even for widely studied
materials. Such a dataset constitutes a natural foundation for both constructing
effective potentials for binary systems and for developing other Al-based acceleration
strategies.

Reproducibility and Transparency: Artificial-intelligence approaches have the
potential to significantly improve the reproducibility and transparency of research
and thus the credibility of scientific claims. Transparency is commonly associated
with the availability of data, algorithms, and software. However, transparency is
primarily about the existence of sufficiently explicit and well-documented records that
allow others to both reproduce and further build on the original investigation.
Reproducibility and transparency are particularly important in the realm of artificial
intelligence, given the arbitrariness of many choices and decisions made by researchers.
Beyond documenting information that is specific to a scientific project, it is essential
to also properly indicate theoretical and methodological knowledge that may be
considered general or widely shared in the scientific community but that particular
authors have chosen to rely on as background and without independent justification.

Computational Efficiency and Hardware Utilization: Binary liquids commonly
exhibit phase separation and complex patterns of miscibility at low concentrations of
the minor component, which poses additional challenges for theoretical description.
Such systems are representative of many substances important for practical
applications. Datasets specifically targeted at binary liquid mixtures have been
established to support research on their theory and properties. A widespread approach
for parameterizing models of molecular interactions is to specify a continuous potential
energy surface (PES) either empirically or using data from quantum-mechanical
electronic-structure calculations. Supervised learning delivers accurate models of the
PES in precise chemical environments. Al-driven methods for modeling
multicomponent systems, including neural network and graph-based potentials,
address the delicate propagation of configurational perturbations through the solvent
environment. Data-efficient active learning is used to accelerate these endeavors.
Coupled quantum/molecular-continuum frameworks enable multiscale simulation
without human intervention.

Computational efficiency, hardware utilization, and scalable software throughout
the modeling workflow are relevant to rigorous and reproducible research. Sampling
high-dimensional configuration spaces remains a significant bottleneck for uncertainty
quantification in complex systems. The computational cost of density functionals and
standard molecular mechanics prohibits on-the-fly calculations of the ground-state
electron density and molecular interactions for increasingly large time steps, domains,
and ensembles. The preconditioning of many-body potentials allows a small number

Volume: 1, Issue: 1, September-October 2025 (41)



www.stemmaresearch.com ISSN (Online): Applied

of elements to capture the majority of physicochemical characteristics. Large neural-
graph networks can be trained on thousands of dual-graph micro-datasets in parallel,
dramatically improving throughput.

Implications for Theory and Experiment

The relevance of Artificial Intelligence (Al) in the theoretical modeling of molecular
Interactions in binary liquid systems extends beyond the modeling per se. Insights
obtained with Al-based methods allow formulating new hypotheses and devising
relevant experiments. Theoretical models of, and numerical simulations for, binary
liquid mixtures are increasingly based on datasets generated by artificial intelligence
systems, providing novel opportunities and challenges for both theory and experiment.
The modeling of binary liquid mixtures is an important problem in many fields of
science and technology, yet the physicochemical properties of binary liquids remain
difficult to understand from a fundamental point of view. Al can accelerate progress
toward a better physical understanding of binary liquids. Indeed, new computational
perspectives based on the theoretical modeling of molecular interactions in binary
liquid systems have arisen, emphasizing parallel developments of holistic and
integrated strategies to carry out Al-plasmonics research. Knowledge-driven
approaches that do not rely solely on huge datasets are widely applicable to chemical
data. Al-driven strategies advance the physical modeling of binary liquids beyond
current paradigms, reinforcing the role of Al in understanding the interactions
underlying many binary mixtures.

Future Directions and Open Questions

Theoretical models of molecular interactions in liquid systems can greatly benefit
from Al advances. Liquids are exceedingly complex, yet they are critically important
to many natural and industrial processes. For such systems, several different theoretical
approaches, yet most still treat the interactions between molecular complexes in terms
of purely classical potentials, which are expensive in a model-free approach and hence,
approximate, leading to an exploration of Al-based techniques to reduce the modeling
burden. Integrating Al into the modeling of binary liquid systems offers numerous
avenues for accelerating model development. Pair potentials are often fitted to large
structure property data or through focus in combination with semi-empirical compute
and quantum chemical calculations, allowing Al to deliver considerable gains in
efficiency and physical insight. While much progress has been made in modeling water
with only a few percent of classical potential energy fits achieved, myriad more accurate
and transferable models than currently exist remain to be realized. Water remains
far less understood among all the liquid systems of interest, with Al helping to bridge
the resulting knowledge gap.

Conclusion

A concise synthesis of findings, contributions, and proposed pathways for advancing
theory and practice follows. Systematic efforts in applying Al to the theoretical modeling
of molecular interactions in binary liquid mixtures progress beyond the case-by-case
treatment of specific systems, toward the comprehensive coverage required for
predictive investigations of diverse areas ranging from thermophysical properties to
chemical reaction kinetics. Al provides a powerful means for accelerating the generation
and curation of high-quality training data, greatly enhancing the opportunities for
rigorous model development and ultimately enabling more confidence in predictions.
Formal connections among data in tandem with advanced uncertainty quantification
approaches bridge the conceptual divide between AI models and classical
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thermodynamics. Transparent and reproducible workflows, spanning data curation,
model training, and application, complement the growing availability of benchmark
datasets required for supervised learning. Advances in the synthesis of distinct Al-
enabled techniques, culminating in the deployment of a versatile and general-purpose
sampling engine, reinforce the foundational role of theoretical molecular modeling in
assisting the interpretation and rational design of experiments. Finally, both the
versatile nature of the developed framework and the insight that has emerged in the
study of aqueous-organic binary mixtures highlight the opportunities for Al to address
long-standing problems in the field of molecular interactions, both in binary liquid
systems and beyond. The advancement of Al in these directions can drive discovery
across the range of playfully named and yet significantly more complex mixtures that
have begun to receive recent attention.
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